
AWDRAT: A Cognitive Middleware System
for Information Survivability ∗

Howard Shrobe and Robert Laddaga
MIT CSAIL

32 Vassar Street
Cambridge, MA 02139

Bob Balzer and Neil Goldman
and Dave Wile and Marcelo Tallis
and Tim Hollebeek and Alexander Egyed

Teknowledge
4640 Admiralty Way, Suite 1010

Marina del Rey, CA 90292

Abstract

The Infrastructure of modern society is controlled by
software systems that are vulnerable to attacks. Many such
attacks, launched by ”recreational hackers” have already
led to severe disruptions and significant cost. It, therefore,
is critical that we find ways to protect such systems and to
enable them to continue functioning even after a successful
attack.

This paper describes AWDRAT, a middleware system for
providing survivability to both new and legacy applica-
tions. AWDRAT stands for Architectural-differencing,
Wrappers, Diagnosis, Recovery, Adaptive software, and
Trust-modeling. AWDRAT uses these techniques to gain
visibility into the execution of an application system and to
compare the application’s actual behavior to that which is
expected. In the case of a deviation, AWDRAT conducts
a diagnosis that figures out which computational resources
are likely to have been compromised and then adds these
assessments to its trust-model. The trust model in turn guides
the recovery process, particularly by guiding the system in its
choice among functionally equivalent methods and resources.

AWDRAT has been used on an example application system,
a graphical editor for constructing mission plans. We present
data showing the effectiveness of AWDRAT in detecting a
variety of compromises to the application system.

Overview
To the extent that traditional systems provide for immunity
against attack, they rely either on detecting known patterns
of attack or on detecting statistically anomalous behavior.
Neither of these approaches is satisfactory: The first ap-
proach fails in the face of novel attacks, producing an unac-
ceptably high false negative rate. The second approach con-
founds unusual behavior with illegal behavior; this produces
unacceptably high false positive rates and lacks diagnostic
resolution even when and intrusion is correctly flagged.

In this paper, we present AWDRAT, a middleware system
to which an existing application software may be retrofitted

∗This article describe research conducted at the Artificial Intel-
ligence Laboratory of the Massachusetts Institute of Technology.
Support for this research was provided by the Information Process-
ing Technology Office of the Defense Advanced Research Projects
Agency (DARPA) under AFRL Contract Number FA8750-04-2-
0240. The views presented are those of the author alone and do not
represent the view of DARPA or AFRL.
Copyright c© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

and that provides immunity to compromises of the system
by making it appear to be self-aware and capable of ac-
tively checking that its behavior corresponds to that intended
by its designers. “AWDRAT” stands for Architectural-
differencing, Wrappers, Diagnosis, Recovery, Adaptivity
and Trust-modeling; it provides a variety of services that are
normally taken care of in anad hocmanner in each individ-
ual application, if at all. These services include fault con-
tainment, execution monitoring, diagnosis, recovery from
failure and adaption to variations in the trustworthiness of
the available resources. Software systems tethered within
the AWDRAT environment behave adaptively, and with the
aid of AWDRAT these system regenerate themselves when
attacks cause serious damage.

The AWDRAT Architecture
The AWDRAT architecture is shown in Figure 1. AWDRAT
is provided with models of the intended behavior of the ap-
plications it is intended to protect. These models are based
on a “plan level” decomposition that provides pre- and post-
and invariant conditions for each module. AWDRAT ac-
tively enforces these declarative models of intended behav-
ior using “wrapper” technology. Non-bypassable wrappers
check the model’s conditions at runtime, allowing execution
to proceed only if the observed behavior is consistent with
the model’s constraints. We call this technique “Architec-
tural Differencing”. In the event that unanticipated behavior
is detected, AWDRAT uses Model-Based Diagnosis to de-
termine the possible ways in which the system could have
been compromised so as to produce the observed discrep-
ancy. AWDRAT proceeds to use the results of the diagno-
sis to update a “trust model” indicating the likelihood and
types of compromise that may have been effected to each
computational resource. Finally, AWDRAT helps the appli-
cation recover from failure, using this trust model to guide
its selection of computational techniques (assuming that the
application has more than one method for carrying out its in-
tended tasks) and in its selection of computational resources
to be used in completing the task.

AWDRAT uses its model of an application’s intended be-
havior to recognize the critical data that must be preserved in
case of failure. AWDRAT generates wrappers that dynam-
ically provision backup copies and redundant encodings of
this critical data. During recovery efforts, AWDRAT installs
these backup copies in place of compromised data resources.

Using this combination of technologies, AWDRAT pro-
vides “cognitive immunity” to both intentional and acciden-
tal compromises. An application that runs within the AW-

Recovery and
Regeneration

Adaptive (Decision
Theoretic) Method

Selection

Trust Model:
Behavior

Compromises
Attacks

Diagnosis

Architectural
Differencer

System ModelsWrapper
Synthesizer

Application
Software

Wrapper

Figure 1: The AWDRAT Architecture

DRAT environment appears to be self-aware, knowing its
plans and goals; it actively checks that its behavior is con-
sistent with its goals and provisions resources for recov-
ery from future failures. AWDRAT builds a “trust model”
shared by all application software, indicating which re-
sources can be relied on for which purposes. This allows an
application to make rational choices about how to achieve
its goals.

Synthesis of Wrappers and Execution Model
AWDRAT, in fact, employs two distinct wrapper technolo-
gies: SafeFamily(Balzer & Goldman 2000; Hollebeek &
Waltzman 2004) and JavaWrap. The first of these encap-
sulates system DLL’s, allowing AWDRAT to monitor any
access to external resources such as files or communication
ports. The second of these provides method wrappers for
Java programs, providing a capability similar to “:around”
methods in the Common-Lisp Object System(Keene 1989;
Bobrow et al. 1988) or in Aspect-J(Kiczaleset al. 2001).
To use the JavaWrap facility, one must provide an XML file
specifying the methods one wants to wrap as well as a Java
Class of mediator methods, one for each wrapped method
in the original application. When a class-file is loaded,
JavaWrap rewrites the wrapped methods to call the corre-
sponding wrapper methods; wrapper methods are passed a
handle to the original method allowing them to invoke the
original method if desired. To use the SafeFamily facility,
one must provide an XML file of rules specifying the re-
sources (e.g. files, ports) and actions (e.g. writing the file,
communicating over the port) that are to be prevented. These
two capabilities are complementary: JavaWrap provides vis-
ibility to all application level code, SafeFamily provides vis-
ibility to operations that take place below the abstraction bar-
rier of the Java Language runtime model. Together they pro-
vide AWDRAT with the ability to monitor the applications
behavior in detail as is shown in Figure 2.

The inputs to these two wrapper generator facilities (the
JavaWrap XML spec, the Java Mediator files and the Safe-
Family XML specification file) are not provided by the user,
but are instead automatically generated by AWDRAT from a
“System Architectural Model” such as that shown in Figure

JBI Client
(in Java)

JVM

WIN32 APISafeFamily
sensors

Java
wrappers

Figure 2: Two Types of Wrappers Used in AWDRAT

3. The model is written in a language similar to the “Plan
Calculus” of the Programmer’s Apprentice (Rich & Shrobe
1976; Shrobe 1979; Rich 1981); it includes a hierarchical
nesting of components, each with input and output ports
connected by data and control-flow links. Each component
is provided with prerequisite and post-conditions. In AW-
DRAT, we have extended this notation to include a variety
of event specifications, where events include the entry to a
method in the application, exit from a method or the attempt
to perform an operation on an external resource (e.g. write
to a file). Each component of the architectural model may
be annotated with “entry events”, “exit events”, “allowable
events” and “prohibited events”. Entry and exit events are
described by method specifications (and are caught through
the JavaWrap facility); allowable and prohibited events may
be either method calls or resource access events (resource
access events are caught by the SafeFamily facility). The oc-
currence of an entry (exit) event indicates that a method that
corresponds to the beginning of a component in the architec-
tural model has started (completed) execution. Occurrence
of a prohibited event is taken to mean that the application
system has deviated from the specification of the model.

Given this information, the AWDRAT wrapper synthe-
sizer collects up all event specifications used in the model
and then synthesizes the wrapper method code and the two
required XML specification files as is shown in Figure 4.

Get event info

Get Next Cmd

Get Leg

Get Events

cmd

Get MovementGet Sortie

event

Add Event

Mission Plan

Add Additional Info

Mission
Plan

Mission Plan

Mission
Plan

Take Off?

Y N

Mission Plan

Mission Plan

Get Events

More Events?
Y N

Each component can
be annotated with:

• Entry Events
• Exit Events
• Allowable Events

Control Flow

Data Flow

Figure 3: An Example System Model

Architectural Differencing
In addition to synthesizing wrappers, the AWDRAT gener-
ator also synthesizes an “execution monitor” corresponding
to the system model as shown in Figure 4. The role of the
wrappers is to create an “event stream” tracing the execu-
tion of the application. The role of the execution monitor is

System Model Wrappers

Wrapper Spec

Execution Monitor

Figure 4: Generating the Wrapper Plumbing

to interpret the event stream against the specification of the
System Architectural Model and to detect any differences
between the two as shown in Figure 5. Should a deviation be
detected, diagnosis and recovery is attempted. Our diagnosis
and recovery systems, far and away the most complex parts
of the AWDRAT run-time system, are written in Common-
Lisp; therefore, the actual “plumbing” generated consists of
Java wrappers that are merely stubs invoking Lisp mediators
that, in turn, signal events to the execution monitor, which is
also written in Lisp. This is shown in Figure 6.

The architectural model provided to AWDRAT includes
prerequisite and post-conditions for each of its components.
A special subset of the predicates used to describe these con-
ditions are built into AWDRAT and provide a simple abstract
model of data structuring. The AWDRAT synthesizer ana-
lyzes these statements and generates code in the Lisp me-
diators that creates backup copies of those data-structures
which are manipulated by the application and that the archi-
tectural model indicates are crucial.

The execution monitor behaves as follows: Initially all
components of the System Architectural Model are inactive.
When the application system starts up it creates a “startup”
event for the top level component of the model and this com-
ponent is put into its “running” state. When a module en-
ters the “running” state it instantiates its sub-network (if it
has one) and propagate input data along data flow links and
passes control along control flow links.

When data arrives at the input port of a component, the
execution monitor checks to see if all the required data is
now available; if so, the execution monitor checks the pre-
conditions of this component and if they succeed, it marks
the component as “ready”. Should these checks fail, diagno-
sis is initiated.

As events arrive from the wrappers, each is checked:

• If the event is a “method entry” event, then the execution
monitor checks to see if this event is the initiating event of
a component in the “ready” state; if so, the component’s
state is changed to “running”. Data in the event is cap-
tured and applied to the input ports of the component.

• If the event is a “method exit” then the execution monitor
checks to see if this is the terminating event of a “running”
module; if so, it changes the state of the component to
“completed”. Data in the event is captured and applied
to the output ports of the component. The component’s
post-conditions are checked and diagnosis is invoked if
the check fails.

• Otherwise the event is checked to see if its an allowable
or prohibited event of some running component; detec-
tion of an explicitly prohibited event initiates diagnosis as
does the detection of an unexpected event, i.e. one that
is neither an initiating event of a ready component, or a
terminating or allowable event of a running component.

Using these generated capabilities, AWDRAT detects any
deviation of the application from the abstract behavior spec-
ified in its System Architectural Model and invokes its diag-
nostic services.

Real
Output

Simulated
Output

Real Environment (Implementation)

Simulated Environment (Model)

in

in'

out

out'

List of
Conflicts

Translator
in out

Simulated
Component

Real
Component

Reflection

Differencer

Figure 5: Architectural Differencing

AWDRAT Monitoring Implementation
Original Java Program

Method

Data Model

Method

Method

Java Mediators

Wrapper

Wrapper

Wrapper

Duplicated Data Model

Lisp Mediators

Application Scripting

Reconstitution

Application Tracking

Execution Monitor

Integrity Checks

Wrapper

Wrapper

Wrapper

Event Stream

Method Selection

Figure 6: The Generated Plumbing

Diagnostic Reasoning
AWDRAT’s diagnostic service is described in more detail
in (Shrobe 2001) and draws heavily on ideas in (deKleer
& Williams 1989). Each component in the System Archi-
tectural Model provided to AWDRAT is provided with be-
havioral specifications for both its normal mode of behavior
as well as additional models for faulty behavior. As just
explained in the section on Architectural Differencing, an
event stream tracing the execution of the application system,
is passed to the execution monitor, which in turn checks
that these events are consistent with the System Architec-
tural Model. As the execution monitor does this, it builds up
a data base of assertions describing the system’s execution
and connects these assertions in a dependency network. Any
directly observed condition is justified as a “premise” while
those assertions derived by inference are linked by justifica-
tions to the assertions they depend upon. In particular, post-
conditions of any component are justified as depending on
the assumption that the component has executed normally
as is shown in Figure 7. This is similar to the reasoning
techniques in (Shrobe 1979).

Should a discrepancy between actual and intended behav-
ior be detected, this will show up as a contradiction in the
database of assertions describing the application’s execution

Step1
Normal
Mode

Post-Condition1

Preconditions
Step1

Post-Condition2

Preconditions
Step2

Step1
Abnormal

Mode1

Preconditions
Step3

Checked,
Pinned at
P = 1

Host1
Normal
Mode

Host1
HighJacked

P = .9

P = .8

“ Logical or”
probability table

“ Logical and”
probability table

“ Logical and”
probability table

Checked,
Pinned at
P = 1

Step1

Bad Image
File Attack

P = .7

Bogus Condition

Figure 7: Dependency Graph

history. Diagnosis then consists of finding alternative behav-
ior models for some subset of the components in the archi-
tectural model such that the contradiction disappears when
these models of off-nominal behavior are substituted.

In addition to modeling the behavior of the components
in the system architectural model, AWDRAT also models
the health status of resources used by the application. We
use the term “resource” quite generally to include data read
by the application, loadable files (e.g. Class files) and even
the binary representation of the code in memory. Part of
the System Architectural Model provided to AWDRAT de-
scribes how a compromise to a resource might result in an
abnormal behavior in a component of the computation; these
are provided as conditional probability links. Similarly, AW-
DRAT’s general knowledge base contains descriptions of
how various types of attacks might result in compromises
to the resources used by the application as is shown in Fig-
ure 8. AWDRAT’s diagnostic service uses this probabilistic
information as well as the symbolic information in the de-
pendency network to build a Bayesian Network and thereby
to deduce the probabilities that specific resources used by
the application have been compromised.

Normal:
Highjacked:

Uses Resource

Normal: Probability 90%

Hacked: Probability 10%

Component 1

Has models
Has models

Conditional probability = .2

Conditional probability = .3

Image-1

Host1 Reads Image File
Has-

Vulnerability Overflow-AttackEnables

Image-File

Resource-type

Causes
Normal

HighJacked Execution

.5

.7

Figure 8: Diagnosis With Fault and Attack Models

Self-Adaptive Software
Recovery in AWDRAT depends critically on self-adaptive
techniques such as those described in (Laddaga, Robertson,
& Shrobe 2001). The critical idea is that in many cases an
application may have more than one way to perform a task.

For example, in the experiments that will be described in
the section on experimental methods, we tethered a graph-
ical editor application to AWDRAT. This application loads
image files (e.g. GIF, JPEG) and, as it happens, there is a
vulnerability (since fixed) related to loading malformed im-
age files. This is enabled by the use of a “native library”
(i.e. code written in C). There is also a Pure Java library
that performs the same task, however, it is slower, handles
fewer image formats and also produces lower quality images
in some cases.

Self-adaptive software involves making dynamic choices
between alternative methods such as the native and Pure Java
image loading methods. The general framework starts from
the observation that we can regard alternative methods as
different means for achieving the same goal. But the choice
between methods will result in different values of the “non-
functional properties” of the goal; for example, different
methods for loading images have different speeds and dif-
ferent resulting image quality. The application designer pre-
sumably has some preferences over these properties and we
have developed techniques for turning these preferences into
a utility function representing the benefit to the application
of achieving the goal with a specific set of non-functional
properties. Each alternative method also requires a set of
resources (and these resources must meet a set of require-
ments peculiar to the method); we may think about these
resources having a cost. As is shown in Figure 9, the task of
AWDRAT’s adaptive software facility is to pick that method
and set of resources that will deliver the highest net benefit.
Thus AWDRAT’s self-adaptive software service provides a
decision theoretic framework for choosing between alterna-
tive methods.

Parameters

Utility
Function

The Binding
of Parameters
Has a Value

Resource1,1

Resource1,2

Resource1,j

Each Plan Requires
Different Resources

Goal

A Goal is
Activated with
a Set of
Parameters

Resource
Cost

Function

The Resources
Used by the Method
Have a Cost

Each Method Binds the Settings of
The Parameters in a Different Way

Plan1

Plan2

Plann

Each Service Can Be
Provided by Several

Plans

Goals Are Dynamically Mapped to
Plans

The System Selects the Plan Which Maximizes Net Benefit

Net Benefit

Figure 9: Adaptive Software Picks the Best Method

Recovery and Trust Modeling
As shown in Figure 10, the results of diagnosis are left in
a trust model that persists beyond the lifetime of a partic-
ular invocation of the application system. This trust model
contains assessments of whether system resources have been
compromised and with what likelihood. The trust model
guides the recovery process.

Recovery consists of first resetting the application sys-
tem to a consistent state and then attempting to complete the
computation successfully. This is guided by the trust model
and the use of self-adaptive software. One form of recov-
ery, for example, consists of restarting the application and
then rebuilding the application state using resources that are
trustable. This consists of:

• Restarting the application or dynamically reloading its
code files (assuming that the application system’s lan-
guage and run-time environment supports dynamic load-
ing, as does Java or Lisp, for example). In doing so AWS-
DRAT uses alternative copies of the loadable code files
if the trust model indicates that the primary copies of the
code files have possibly been compromised.

• Using alternative methods for manipulating complex data,
such as image files or using alternative copies of the data
resources. The idea is to avoid the use of resources that
are likely to have been compromised.

• Rebuilding the application’s data structures from backup
copies maintained by the AWDRAT infrastructure.

The trust model enters into AWDRAT’s self-adaptive
software infrastructure by extending the decision theoretic
framework to (1) Recognize the possibility that a particu-
lar choice of method might fail and to (2) associate a cost
with the method’s failure (e.g. the cost of information leak-
age). Thus, the expected benefit of a method is the raw ben-
efit multiplied by the probability that the method will suc-
ceed while the cost of the method includes the cost of the
resources used by the method plus the cost of method fail-
ure multiplied by the probability that the method will fail.
The probability of success is just the joint probability that
all required resources are in their uncompromised states (and
the failure probability is just 1 minus the probability of suc-
cess). The best method is, in this revised view, the one with
the highest net expected benefit. This approach allows AW-
DRAT to balance off the attraction of a method that provides
a highly desirable quality of service against the risk of using
resources that might be compromised.

Trust
Model

Application

Executable
Code

AWDRAT

Monitors

AWDRAT

Diagnostic
Service

Application

Executable
Code

AWDRAT

Decision
Theoretic
Choice

AWDRAT

Decision
Theoretic
Choice

Trust
Model

Figure 10: The Trust Model Guides Future Recovery

Experimentation and Results
AWDRAT’s goal is to guarantee that the application tethered
to it faithfully executes the intent of the software designer;
for example, for an interactive system this means that the
system should faithfully execute the commands specified by
its user (e.g through an application GUI), or for a server ap-
plication this means that it should faithfully execute the re-
quests received from its client applications.

To assess AWDRAT we applied it to the defense of a
particular application system, the MAF interactive mission
planner - a component of of the DARPA Demval demonstra-
tion system which is in turn based on Rome Labs Joint Bat-
tlesphere Infrastructure (JBI). MAF is a Java-based program
whose primary vulnerabilities arise either through use of na-
tive libraries containing unsafe code or through an attack
that somehow manages to gain enough privileges to modify
the application’s class files. AWDRAT’s primary concern is
not with the attack vector, but rather with the identification
and containment of misbehavior and with the identification

of corrupted resources so that the recovery processes can
avoid them. In particular, AWDRAT focuses on the mainte-
nance of data integrity and data privacy.

We identified the following properties that AWDRAT
should guarantee:

• The data structures maintained by the application should
accurately reflect user requests:
– Each field of each data structure should be what the

GUI requested
– No other fields should be present
– All the fields requested by the GUI should be present

• The application should not be able to open a port to any
application other than to the JBI servers with which it
must communicate (i.e. the JBOSS server).

• The application should not be able to open a port to a
foreign host

• The application should not be able to write files except in
the specified set of directories that constitute its temporary
storage areas.

Experimental Methodology
To test the effectiveness of AWDRAT in guaranteeing these
properties we adopted three distinct ways of attempting to
violate the properties:

• Modification of class files. We hand inserted attack code
into a Java source file, recompiled and placed the class file
into the appropriate directory on the Java Classpath. This
is intended to simulate the case where an external attacker
gained sufficient privileges to corrupt the class files.

• Random attacks. The AWDRAT controller launches a
parasitic thread on startup. This thread waits for a random
delay and then attempts to violate one of the constraints
listed above (e.g. attempts to launch an application, to
open a port, or to corrupt the data structures). Which type
of violation (and in the case of data integrity which field
of which data structure) is chosen randomly; the specific
attack selected is logged for analysis purposes.

• Wrapped methods. AWDRAT places wrappers around a
significant number of methods in the MAF application.
The wrappers can be used as a place from which to launch
a simulated attack; for example, by wrapping the “load-
Image” method, one can simulate an attack payload that
is carried by a corrupted image file (without actually hav-
ing to do the very laborious work of constructing such a
corrupted image file).

The core AWDRAT machinery is kept unaware of the at-
tack machinery. Its goal is to detect and characterize a vio-
lation.

The MAF’s data-structures are a relatively simple tree,
built from instances of a few classes. Each flight path (mis-
sion) is represented by a “Mission-Builder” that contains a
set of “Events”, “Legs”, “Sorties”, and “Movements”. An
Event is a “Take-off”, a “Landing”, or a “Waypoint”. For
each “Take-Off” event there is a corresponding “Leg”, “Sor-
tie” and “movement”. The top level data-structure is an in-
stance of the Mission-Builder class, containing a Hashtable
for the overall mission data and four additional Hashtables
holding the sets of event, leg, sortie and movement data
structures. Each entry in these tables is an instance of the
appropriate type, containing a hashtable with the data spe-
cific to that element of the mission plan.

When considering data-structure integrity, it is important
to understand that the data structures can be modified using
two different levels of calls. Each data-structure is imple-
mented as a Java Class with accessor methods (e.g. “set-
Information”, “getInformation”). In addition, Java defines
methods on Hashtables (e,g, “put”, “get”). The application
always accesses the data structures through its API using the
“getInformation” and “setInformation” methods. However,
attack code might access the data-structures below this level
of API (e.g. using the Hashtable get and put methods or even
using lower-level memory accessing capabilities at the Na-
tive Code level). Thus it is necessary to simulate attempts to
corrupt the data structures using both the API methods and
the hash-table methods (AWDRAT does not wrap or monitor
the hash-table level methods for both pragmatic and techni-
cal reasons, so modifications at this level are as opaque as
modifications using Native code level capabilities).

Each of these simulated attacks methods has drawbacks
and strengths: The first method allows very precise place-
ment of an attack within the code, but might be criticized for
being overly synchronized to the normal execution flow of
the program; the random attacks have a dual set of issues.
However, our feeling is that collectively, these tests cover a
great deal of the appropriate space.

In more detail, here are the tests conducted by category:

1. Modification of Class Files:
• Insert call to write files
• Insert call to launch external application
• Insert call to open port
• Insert code to modify the data structures at the API

level
• Insert code to modify the data structures below the API

level
2. Random delay attacks (through a parallel thread)

• Make call to write files
• Make call to launch external application
• Make call to open port
• Attempt to modify the data structures at the API level
• Attempt to modify the data structures below the API

level
3. Wrapped Methods (used only for “loadImage”)

• Make call to write files
• Make call to launch external application
• Make call to open port

The use of a wrapper to simulate an attack payload was
only employed for the “loadImage” method (to avoid actu-
ally building a payload carrying corrupted image file). The
wrapper only attempts to do the disallowed action when us-
ing the native loadImage library on specific image files iden-
tified in a configuration file; this is admittedly a bit hokey
since the same wrapper mechanism is used both to launch
the simulated attack and to make the decision as to whether
to use the native or Pure Java load method, but we have tried
to keep the two separate and to run an honest test. In this
case we do not attempt to corrupt the MAF data structures
because loadImage is only called in the application during
its initialization, which is before the data structures are cre-
ated. So image based attacks only attempt to open a port or
to write a file.

The second category of violation is launched from a
thread that is started by the initialization code of the system.

This thread waits until the user begins to enter a mission
plan, then picks an arbitrary delay time (less than 4 minutes);
after that delay time, it either attempts to open a port, write a
file or to corrupt the data structures. To do the last of these,
it picks an arbitrary element of the MAF data structures and
attempts to either modify an existing field of the data struc-
ture, or to add an new field. Strictly speaking, adding a new
field to the data structures is harmless, the application will
ignore the extra field. However, the criterion for success is
detecting any deviation of the application from the actions
requested by the GUI, so we include these case as well.

Detection methods
As explained in the sections on Wrappers, Architectural Dif-
ferencing, and Diagnostic Reasoning, Awdrat picks up vio-
lations in one of three ways: 1) It checks the integrity of
the Java data structures against its internal backup copy ev-
erywhere that the system-model specifies that the data struc-
tures should be consistent. 2) It checks that monitored meth-
ods are called only at points in the execution sanctioned by
the system model. 3) It receives messages from the Safe-
Family (dll) wrappers, alerting it to violations of the access
rules imposed by SafeFamily. Some violations that are con-
ceptually in the same category (e.g. data structure integrity)
are picked up by more than one mechanism. For exam-
ple, an attempt to modify the MAF data structures using
an API level call is usually picked up because the call isn’t
sanctioned at that point of the execution; however, using a
hash-table method on a hash-table held in one of the data-
structures will be picked up by the integrity check, since the
hash-table methods aren’t wrapped.

Results Summary
All attempts to launch an application, write a file other than
those sanctioned or to open a port were detected. The only
exception to this broad statement is that an attacker can write
to a file in the MAF’s temporary directory or open one of the
ports used by AWDRAT itself (however, opening such a port
would violate the rules of engagement for the experiments).
Almost all attempts to destroy the integrity of the MAF data
structures were detected; the exception is when the modi-
fication is made using the MAF API level calls during the
execution of a method that legitimately uses the exact same
API call. This only occurs in hand-modified source code
“attacks” (one “random” attack managed to tickle this case).
In principle, it’s possible that an attack operating below the
MAF API level could modify the MAF data structures and
that the modification could be overwritten later by the un-
corrupted MAF code doing the right thing. For example:
• The GUI request that the “ALT” field of Event 1 be set to

“30000”
• The attack code in another thread sets the “ALT” field of

Event 1 to “1” using hash-table or lower level calls
• The MAF method sets the “ALT” field of Event 1 to

“30000”
The net effect is that the data structures are uncorrupted;

however, AWDRAT’s machinery will never detect the un-
successful attempt to corrupt the data structures in this case.

Discussion
The first category of attack includes hand inserted attack
code. Four of these included calls to MAF API level meth-
ods inside other routines that legitimately invoke these meth-
ods. These attacks could have been caught if AWDRAT had

Attack Type Number of Detected Diagnosed Corrected
Attempts

Hand Placed 24 20/83% 20/83% 11/73%
Data MAF API 10 6/60% 6/60% 6/60%
Data lower API 5 5/100% 5/100% 5/100%
Port Opening 3 3/100% 3/100% NA
File Write 3 3/100% 3/100% NA
Application Launch 3 3/100% 3/100% NA

Random 26 25/96% 25/26% 13/92%
Data MAF API 6 5/83% 5/83% 5/83%
Data lower API 8 8/100% 8/100% 8/100%
Port Opening 5 5/100% 5/100% NA
File Write 4 4/100% 4/100% NA
Application Launch 3 3/100% 3/100% NA

Wrapped 9 9/100% 9/100% 9/100%
File Write 3 3/100% 3/100% 3/100%
Port Opening 3 3/100% 3/100% 3/100%
Application Launch 3 3/100% 3/100% 3/100%

Total 59 54/91% 54/91% 33/86%

Figure 11: Experimental Results

interposed itself at a higher level in the call tree, specifically
at the boundary between the GUI and the rest of the MAF
application. As it happens, the MAF system is not appro-
priately modularized to facilitate this. One of the random
attacks managed by pure chance to run in parallel with an
application routine that invoked the same MAF level API;
we thought this was too unlikely to actually occur, but we
were wrong. This slips by because the current AWDRAT
execution monitor isn’t aware of thread structure.

Attacks that attempt to open ports, write files, or launch
applications were intercepted and blocked by the SafeFam-
ily wrappers, preventing any bad effect from being propa-
gated. This is why the last column is marked Not Applicable
(NA) for these categories of attack. In fact, AWDRAT does
restart the application and rebuild its data structures in these
cases as well. For the Wrapped cases (i.e. those involving
simulated corrupt image files) the last column is listed be-
cause the dominant diagnostic hypothesis in those cases is
that a attack was launched from payload code embedded in
the image being loaded. In these cases, switching to the Pure
Java method and/or using a different format of the image
file constitutes successful recovery. We did not mark these
cases as NA, since there was significant decision making in
the recovery process. In the other cases, the dominant diag-
nostic hypothesis was that the class files (and/or core image)
were corrupted, in which case the recovery process involved
switching the class path to backup copies of the JAR files.

Finally we note that there are no false positives. This is to
be expected if the system model is a reasonable abstraction
of the program.

In addition to these extensive internal tests, we also sub-
jected AWDRAT to a Red-Team experiment. The Red-Team
experimented with a much broader range of issues than the
internal experiments, many of which involved issues that
AWDRAT was not expected to deal with. Nevertheless AW-
DRAT performed at a level above the programmatic goals of
the DARPA SRS program that sponsored this effort.

Moving Towards Practicality

AWDRAT is not yet ready for full deployment, we are form-
ing plans to apply it to another set of target application and
server systems. There are two major costs involved in the
use of AWDRAT: The development cost of building a sys-
tem model and the runtime overhead that AWDRAT imposes
on the hosted application system. In our experience so far,
the second of these costs is negligible. Since we used AW-
DRAT to defend an interactive application, the key question
is whether the overhead slows down the user interface and
we experienced no observable degradation of performance.
However, for real-time embedded applications we will need
to be much more careful about containing the cost of execu-
tion monitoring.

The development cost of building the system model is
also manageable in our experience if the application’s ar-
chitecture is well understood. This wasn’t true for the MAF
system, being demonstration prototype code its architecture
was not documented and we had to engage in “software
archeology” to gain an understanding. One of the key tools
we used for this effort was AWDRAT’s wrappers, which al-
lowed us to trace the execution of the application system
at the method call level and thereby deduce how it was in-
tended to work.

We have also learned that there is a tradeoff to be made be-
tween the level of detail in the system and the degree of cov-
erage that AWDRAT provides. A relatively coarse model,
takes proportionally less effort to build and imposes less run-
time overhead but provides fewer guarantees of coverage. In
the best of cases, the application to be protected is well un-
derstood and reasonably well modularized. In these cases,
the construction of the system model is straightforward (and
might be generated from existing architectural models such
as UML diagrams). We imagine that in practice the sys-
tem model will be constructed by software engineers famil-
iar with the application system with modest help from the
designers of AWDRAT.

Conclusions and Future Work
AWDRAT is an infrastructure to which an application sys-
tem may be tethered in order to provide survivability prop-
erties such as error detection, fault diagnosis, backup and
recovery. It removes the concern for these properties from
the domain of the application design team, instead provid-
ing these properties as infrastructure services. It uses cogni-
tive techniques to provide the system with the self-awareness
necessary to monitor and diagnose its own behavior. This
frees application designers to concentrate on functionality
instead of exception handling (which is usually ignored in
any case).

AWDRAT’s approach is cognitive in that it provides for
self-awareness through a system model that is a non-linear
plan, and through the use of wrappers and plan monitor-
ing technology. Discrepancies between intended and actual
behavior are diagnosed using Model-based diagnosis tech-
niques while recovery is guided by decision theoretic meth-
ods.

We have demonstrated the effectiveness of AWDRAT in
detecting, containing and recovering from compromises that
might arise from a broad variety of attack types. AWDRAT
is not particularly concerned with the attack vector, since
its major source of power is that it has a model of what the
application should be doingrather than a library of specific
attack types.

The current demonstration has focussed on a client appli-
cation, but we are currently building a system model for a
open-source, Java based version of a Domain Name Server
and we will soon test whether AWDRAT will provide sur-
vivability and resilience to attacks for such a server applica-
tion.

References
Balzer, R., and Goldman, N. 2000. Mediating connec-
tors: A non-bypassable process wrapping technology. In
Proceedings of the First Darpa Information Security Con-
ference and Exhibition (DISCEX-II), volume II, 361–368.
Bobrow, B.; DeMichiel, D.; Gabriel, R.; Keene, S.; Kicza-
les, G.; ; and Moon, D. 1988. Common lisp object system
specification. Technical Report 88-002R, X3J13.
deKleer, J., and Williams, B. 1989. Diagnosis with be-
havior modes. InProceedings of the International Joint
Conference on Artificial Intelligence.
Hollebeek, T., and Waltzman, R. 2004. The role of suspi-
cion in model-based intrusion detection. InProceedings of
the 2004 workshop on New security paradigms.
Keene, S. 1989.Object-Oriented Programming in Com-
mon Lisp: A Programmer’s Guide to CLOS. Number ISBN
0-201-17589-4. Addison-Wesley.
Kiczales, G.; Hilsdale, E.; Hugunin, J.; Kersten, M.; Palm,
J.; and Griswold, W. G. 2001. An overview of aspectj. In
Proceedings of the 15th European Conference on Object-
Oriented Programming, 327–353.
Laddaga, R.; Robertson, P.; and Shrobe, H. E. 2001.
Probabilistic dispatch, dynamic domain architecture, and
self-adaptive software. In Laddaga, R.; Robertson, P.;
and Shrobe, H., eds.,Self-Adaptive Software, 227–237.
Springer-Verlag.
Rich, C., and Shrobe, H. E. 1976. Initial report on a lisp
programmer’s apprentice. Technical Report Technical Re-
port 354, MIT Artificial Intelligence Laboratory.

Rich, C. 1981. Inspection methods in programming. Tech-
nical Report AI Lab Technical Report 604, MIT Artificial
Intelligence Laboratory.
Shrobe, H. 1979. Dependency directed reasoning for com-
plex program understanding. Technical Report AI Lab
Technical Report 503, MIT Artificial Intelligence Labora-
tory.
Shrobe, H. 2001. Model-based diagnosis for information
survivability. In Laddaga, R.; Robertson, P.; and Shrobe,
H., eds.,Self-Adaptive Software. Springer-Verlag.

